KING DRUGS

ION

its utilizing the isolated rabbit trac-
, chlorisondamine, pemipidine, pento-
on effectors cells in the bronchial
ry effects of adrenaline and isopre-

ganglion blocking drugs
the excitatory or alpha adrenergic
have a preponderance of the beta
adrenergic amines by relaxation. The
blocking agents studied was not
as responses to aminophylline.
though the exact mode of action of
ents it could be reasonably assumed
on the bronchial smooth muscle to
action such as cell permeability to
bronchodilator drugs like adrenaline,
higher concentrations produced a
ibitory effects of adrenaline and
ant effect on amines responses is not
tractile response of the aortic strip to
concentrations of chlorisondamine has
examethonium had no effect either
or those to aminophylline. It is
of any local sensitizing effect on the
sion was drawn by Lum and Rash-
ing the cat carotid strip and the

ANALGESIC ACTIVITY OF A NEW QUINOLINE DERIVATIVE
RO-4-1778.
By
S. K. GUPTA AND B. B. GAITONDE
From the Department of Pharmacology, Grant Medical College, Bombay
(Received August 30, 1963)

A new analgesic Ro-4-1778 has been studied in rats and its analgesic activity
has been compared with that of morphine. The analgesic activity of Ro-4-1778 and
morphine was potentiated by chlordiazepoxide.

Analgesic drugs are extensively used in clinical practice. Many new
drugs have entered the armamentarium of a clinician for relief of pain. But
as yet, no single drug satisfies all the requirements of an ideal analgesic.

Evaluation of analgesic activity of any new compound can best be done
on pathological or postoperative pain in patients (Beecher, 1957). However,
induced pain in the laboratory animals or human volunteers has often been
used as a preliminary investigation. Although such methods have obvious
limitation, they are extensively used for screening a new drug to obtain a
comparative data on its analgesic activity.

In the present study a new analgesic Ro-4-1778 (I-(p-chloro-
phenethyl)—6, 7—dimethoxy—2—methyl 1, 2, 3, 4, tetrahydro isoquinoline
has been studied for its analgesic action in rats. The drug is a quinoline
compound and was synthesised by Brossi et al (1960). This drug has been
compared with morphine. Further, it has also been studied in combination
with chlordiazepoxide (Librium). Thermal stimulus was used for producing
pain and a graded response method was employed for evaluating the anal-
gesic activity.

METHODS

The analgesic activity was determined in rats using the Techno Anal-
gesiometer (Techno Electronics, Lucknow). The rat was kept in the holder,
the tail resting on a bridge with an electrically heated tantalum wire. The
tail received radiant heat from wire. The wire was heated by putting on the
instrument and a current strength of 8 m A was passed and the time taken
for withdrawal of the tail was noted. This gave the normal or control reading.
Three control readings were taken. The drug was then injected
intraperitoneally and the effect was noted at the end of 45 min, by taking
three readings as before. An increase in time over control was an index of the analgesia produced by the drug. If, however, a rat failed to withdraw its tail within 15 sec, test reading was recorded as more than 15 sec. A maximum time limit of 15 sec was found necessary since it was observed that if the tail was allowed to rest on the bridge beyond 15 sec it got burnt in most of the cases and the rat could not be used again. In a group that received chlordiazepoxide, it was given along with the analgesic intraperitoneally.

As far as possible the same rats were used for all the doses of each drug. However, if the rats were found unsuitable for repeated studies they were replaced by fresh ones.

RESULTS

Initially the effect of normal saline intraperitoneally was studied in six rats. There was no change in pain threshold after saline. Ro—4—1778 and morphine in four different doses with and without chlordiazepoxide were studied and the results are given in the Tables I & II. The number of rats receiving each dose ranged between 5 and 15.

Morphine was used in doses of 2.5, 5.0, 10.0 and 12.5 mg per kg respectively. In each case, pain threshold was modified. It was significantly increased with a dose of 5 mg and above (P<0.05).

Ro—4—1778 was used in doses of 10, 20, 30 and 50mg/kg. Here a definite analgesic activity was noted with a dose of 20 mg and above (P<0.01) (Table No. II).

It was noted further that in a few rats receiving Ro—4—1778 a dose higher than 50 mg/kg showed an evidence of hyperexcitability and some actually went into convulsions. Five rats receiving a dose of 100 mg/kg died of severe clonic convulsions.

Chlordiazepoxide alone was given in 3 rats in 2 doses 5 mg and 10 mg/kg. There was no evidence of any analgesia. Hence it was thought worth while to see if a dose of 10 mg/kg of the drug would have any effect on morphine and Ro—4—1778 induced analgesia. It may be seen from the Tables I & II that the analgesic effect was potentiated by chlordiazepoxide in case of both the drugs.

Log dose response curves were drawn as shown in fig. 1. It will be seen that both drugs gave a fairly good dose response curve. However, morphine is much more potent than Ro—4—1778.
A time over control was an index of however, a rat failed to withdraw ordered as more than 15 sec. A maximum since it was observed that if beyond 15 sec it got burnt in most again. In a group that received the analgesic intraperitoneally.

used for all the doses of each drug. Inable for repeated studies they were

intraperitoneally was studied in six hold after saline. Ro-4-1778 and and without chlordiazepoxide were Tables I & II. The number of rats id 15.

0, 10.0 and 12.5 mg per kg respec- was modified. It was significantly t (P<0.05).

0, 30 and 50mg/kg. Here a definite dose of 20 mg and above (P<0.01) rats receiving Ro-4-1778 a dose of hyperexcitability and some receiving a dose of 100 mg/kg died of 3 rats in 2 doses 5 mg and 10 analgesia. Hence it was thought if the drug would have any effect on s. It may be seen from the Tables initiated by chlordiazepoxide in case

as shown in fig. I. It will be dose response curve. However, mor-

TABLE I

<table>
<thead>
<tr>
<th>Dose of morphine</th>
<th>2.5 mg/kg</th>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
<th>12.5 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine alone</td>
<td>6.8 ± 0.46</td>
<td>6.8 ± 0.27</td>
<td>6.2 ± 0.23</td>
<td>6.4 ± 0.39</td>
</tr>
<tr>
<td>After</td>
<td>13.0 ± 1.32</td>
<td>11.7 ± 0.85</td>
<td>11.6 ± 0.33</td>
<td>13.8 ± 0.83</td>
</tr>
<tr>
<td>% Increase</td>
<td>52.3</td>
<td>68.0</td>
<td>86.6</td>
<td>108.3</td>
</tr>
</tbody>
</table>

Before and after refer to the time required for the tail to be moved before and after the drug.

<table>
<thead>
<tr>
<th>Dose of morphine</th>
<th>2.5 mg/kg</th>
<th>5 mg/kg</th>
<th>10 mg/kg</th>
<th>12.5 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine + chlordiazepoxide 10 mg/kg</td>
<td>121.7 ± 1.07</td>
<td>108.8 ± 0.43</td>
<td>123.9 ± 1.63</td>
<td>163.0 ± 0.31</td>
</tr>
<tr>
<td>After</td>
<td>13.3 ± 0.80</td>
<td>14.2 ± 0.43</td>
<td>15.0 ± 0.00</td>
<td>15.0 ± 0.00</td>
</tr>
<tr>
<td>% Increase</td>
<td>65.0</td>
<td>65.0</td>
<td>65.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Before and after refer to the time required for the tail to be moved before and after the drug.

\(+ \) refers to the standard error.
TABLE II

Effect of Ro-4-1778 alone and in combination with chlordiazepoxide

<table>
<thead>
<tr>
<th>Dose of Ro-4-1778</th>
<th>Ro-4-1778</th>
<th>Ro-4-1778 + chlordiazepoxide 10 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td></td>
<td>% Increase</td>
<td>t-value</td>
</tr>
<tr>
<td>10 mg/kg</td>
<td>6.6 ± 0.58</td>
<td>7.7 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>5.9 ± 0.15</td>
<td>10.9 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>6.8 ± 0.23</td>
<td>13.6 ± 0.56</td>
</tr>
<tr>
<td>20 mg/kg</td>
<td>6.2 ± 0.86</td>
<td>15.0 ± 0.00</td>
</tr>
</tbody>
</table>

Before and after refer to the mean reading in sec required for the tail to be moved before and after the drug.

± Refers to the standard error.

From the table, it can be observed that Ro-4-1778 is potent in about 4 times ro4-1778 alone (p<0.01). The potencies of the drugs are not paralinearly.
DISCUSSION

From the dose response curves it is clear that the analgesic potency of the drug Ro-4-1778 is less than that of morphine. The two dose-response lines are not parallel and therefore, at ED 50 ratio is calculated for comparison of potency of the two drugs. On the basis of this ratio it is seen that morphine is about 4.5 times more potent than Ro-4-1778. The dose response lines are not parallel and it, therefore, appears that the two drugs are producing action by different mechanism or at least by acting at different sites.

Courvoisier et al. (1953) demonstrated that chlorpromazine potentiates the analgesic effect of morphine and pethidine in mice. It is therefore interesting to note that chlordiazepoxide a non-phenothiazine tranquilliser also has similar effect in doses in which it fails to show any analgesic action.

From the Table I, it is found that 10 mg chlordiazepoxide when combined with morphine 2.5 mg and 5 mg/kg produced an increase in time by 121.7 per cent and 108.8 respectively (the difference however is not statistic-
ally significant). This discrepancy may be due to the fact that when a fixed dose of chlordiazepoxide 10 mg/kg is combined with morphine, it is immaterial whether 2.5 or 5 mg/kg is administered since even with 2.5 mg/kg nearly a maximal effect is produced.

Similarly from Table II, it is evident that chlordiazepoxide is more effective in potentiating the analgesic effect of lower doses of Ro-4-1778 i.e, 10 mg & 20 mg/kg.

Since it was found that the analgesic action of Ro-4-1778 was increased when combined with Chlordiazepoxide, it was thought to give a clinical trial of the combination in postoperative patients.

Thanks are due to Roche Products Ltd for the supply of Ro-4-1778 and chlordiazepoxide.

REFERENCES