ABNORMAL CARDIOVASCULAR AND ELECTROCARDIOGRAPHIC PROFILES AND CARDIAC GLYCOGEN CONTENT IN RABBITS INJECTED WITH SCORPION VENOM

P. BALASUBRAMANIAM AND RADHA KRISHNA MURTHY KARI

Department of Physiology,
Lokmanya Tilak Municipal Medical College, Sion, Bombay – 400 022

(Received on March 23, 1981)

Summary: Cardiovascular and ECG abnormalities were studied following injection of venom of Buthus tamulus, a common scorpion found in South India. Venom was administered in doses of 2 and 4 mg/kg body weight. Subsequent estimation of glycogen content of different chambers of the heart showed a significant reduction in tissue glycogen levels in both atria and ventricles in animals treated with a venom dose of 2 mg/kg. However, a significant reduction occurred only in atria with a higher venom dose of 4 mg/kg.

Key words: scorpion venom, tissue glycogen, ECG abnormalities, atria and ventricles

INTRODUCTION

Various cardiovascular and ECG abnormalities are seen in children and adults dying of scorpion stings (5, 10). There are also several reports to show the effects to be dose-dependent (3, 4, 11). These manifestations are probably due to the neurovegetative effects of the venom on the sympathetic system with a subsequent catecholamine overdose (3, 5). These findings were supported by estimation of catecholamines and their degradation products in urine (5) as well as by the effects of blockers (3).

Earlier reports indicate that glycogen protects the heart against hypoxia (13) and that it disappears rapidly from the hypoxic heart (7) suggesting a high level of glycolysis. The catecholamines released from the sympathetic system by the venom in turn cause relative myocardial hypoxia resulting from their ionotropic effects on the myocardium, or by directly enhancing oxygen consumption to the point of causing myocardial hypoxia (5). It would then be logical to assume that, as a consequence of this relative hypoxia, the glycogen content of the heart would decrease on injection of the venom. McDonald et al. (8) have shown a greater atrial glycolytic capacity, than that of ventricles. This conflicts
with the findings of Dhalla et al. (1) who have shown a higher total enzyme phosphor-
lase (a glycolytic enzyme) in ventricles, than in atria. The present report correlates the
decrease or otherwise in tissue glycogen in atria and ventricles with the cardiovascular E.C.G.
manifestation as a result of injection of scorpion venom in two doses of different strengths.

MATERIALS AND METHODS

Rabbits (1-1.5 kg wt.) were anaesthetized with Pentobarbitone sodium (30 mg/kg iv) and then one group of rabbits were injected intramuscularly with venom of Buthus.
Tamulus in dose of 2 mg/kg whereas another group received 4 mg/kg. Control animals
received injection of normal saline only.

ECG was recorded with Standard Limb lead II before and after venom injection.
All rabbits were kept fasting overnight (6) prior to killing. Then the animals were sacri-
ficed by cervical dislocation. The heart was removed, the atria and ventricles weighed
separately, and their glycogen content estimated (9), after first extracting glycogen by
digestion with hot potassium hydroxide. All estimations were done in triplicate, and values
were obtained by comparing with predrawn standard curve with glucose and expressed as
equivalent of glucose in mg/g wet tissue.

RESULTS

ECG in control animals as well as in animals administered scorpion venom are shown
in Figs. 1 and 2. Tissue glycogen content of atria and ventricles in control animals was
compared with experimental animals as shown in Table I.

<table>
<thead>
<tr>
<th></th>
<th>Atria</th>
<th>Ventricles</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>8.86</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05
n = number of animals
+ = dose of venom

In control rabbits, the tissue glycogen content in atria was significantly higher than in ventricles with either dose of venom.

Scorpion stings are known to induce such abnormalities (1). Hospital statistics (Kurnool A
Volume 25
Number 4
October-December 1981
Ind. J. Physiol. Pharmac.

total enzyme phosphory-
ent report correlates the
the cardiovascular E.C.G.
oses of different strengths.

arbitone sodium (30 mg/ kg
with venom of Buthus.
mg/kg. Control animals

nd after venom injection.
the animals were sacri-
and ventricles weighed
extracting glycogen by
in triplicate, and values

scorpion venom are shown
les in control animals was

DISCUSSION

Scorpion stings are known to induce abnormal cardiovascular and ECG profiles in human and experimental population (3, 5, 10). Venom of Buthus tamulus is known to induce such abnormalities (11) as well as produce a defibrination syndrome in humans (2). Hospital statistics (Kurnool Medical College, Kurnool, Andhra Pradesh, India) show a yearly
death rate of 40-50 children of lower age group dying from sting of scorpion (Buthus tamulus). The ECG recordings in the present investigations compared well with those reported by earlier workers with the same venom, either in experimental animals (11) or in clinical cases (5, 10) as also by others (3) with venom of Tityus serrulatus (3). The ECG showed sinus tachycardia with 2 mg/kg dose (Fig. 1-b) and supra ventricular dysrhythmias and “Myocardial infarction-like pattern” with 4 mg/kg dose (Fig. 2a and b). Necropsy studies in fatal scorpion sting cases resembled those due to excessive circulating catecholamines as in pheochromocytoma (5). This supports the view of others (3) that the abnormal ECG profile is due to the increased circulating catecholamines induced by the neuro vegetative action of venom on sympathetic system.

Hexokinase and phosphofructokinase increase their activity during hypoxia (12). Also glycogen disappears readily from the hypoxic heart (7). In the present study, atrial glycogen was significantly reduced in experimental animals with both 2 and 4 mg/kg venom dose. Similarly ventricular glycogen was reduced with either dose though significant reduction was seen only with the lower dose. However, percentage depletion or lowering of glycogen was more marked in atrial tissue than in ventricular tissue.

McDonald et al. (8) showed that atrial tissue has a greater glycolytic capacity than ventricular tissue and is more resistant to hypoxia. Presuming that a higher dose of venom would induce a higher level of circulating catecholamines, resulting in greater myocardial abnormality and damage, this observation of McDonald would be pertinent and could explain the present observation of a greater percentage depletion in atrial glycogen content in either case, though why a higher dose does not cause significant reduction of ventricular glycogen content cannot be explained satisfactorily and could be the basis for further investigation in this field.

ACKNOWLEDGEMENTS

The authors like to thank the Dean, Lokmanya Tilak Municipal Medical College, for providing facilities to conduct these experiments. The authors also thank Prof. N.A. Dabholkar, Department of Physiology, for his helpful suggestions.

REFERENCES

glycolytic capacity than a higher dose of venom though significant glycogen content and could explain the ventricular glycogen depletion or lowering of the myocardial potential for further investigations.

glycolytic capacity than a higher dose of venom though significant glycogen content and could explain the ventricular glycogen depletion or lowering of the myocardial potential for further investigations.

Cardiac Glycogen in Rabbits Injected with Scorpion Venom