ANTERIOR CEREBELLUM AS A SITE FOR MORPHINE ANALGESIA AND POST-STIMULATION ANALGESIA

P. K. DEY AND A. K. RAY

Neurophysiology Research Unit, Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi – 221 005

(Received on August 31, 1981)

Summary: The microinjection of 10 μg Morphine into culmen region of anterior cerebellum produced profound analgesia in rats, and this was antagonised with intraperitoneal administration of naloxone. On the other hand, the same injection of morphine into lobus simplex and declive region of posterior cerebellum was without any effect on nociception. Further it was observed that chronic surgical ablation of culmen-centralis region of anterior cerebellum markedly diminished the duration of analgesia elicited with systemic administration of morphine, though ablation per se had no influence on nociception. Also, the focal electrical stimulation of culmen region for a brief period exhibited post-stimulation analgesia. These findings indicate that anterior cerebellum specifically plays some role in the modulation of physiological mechanisms of pain relief.

Key words: morphine analgesia cerebellum post-stimulation analgesia naloxone

INTRODUCTION

There is now considerable evidence that morphine analgesia can be elicited following its injection into the different loci of the brain: the thalamus (2); the hypothalamus (4, 7, 19, 20); the periaqueductal gray matter (8, 14, 16); the floor of the fourth ventricle (6) and the ventral surface of the brainstem (3, 15). It has also been demonstrated that focal electrical stimulation of some of the aforementioned sites such as, PAG (10), hypothalamus (1) and thalamus (11) can result in the development of antinociceptive response in rats. Siegel and Wepsic (17) reported that antinociceptive response can also be elicited following focal electrical stimulation of anterior cerebellum in monkeys. In the present
paper, we now report that the microinjection of morphine in anterior cerebellum produces profound analgesia in rats, and that the analgesic response of morphine after its systemic administration is greatly attenuated in chronic anterior cerebellectomised rats. We further observed that focal electrical stimulation of anterior cerebellum in rats produces analgesia confirming the observation of Siegel and Wepsic (17) in monkeys.

MATERIALS AND METHODS

The experiments were carried out on male albino rats (200–250 g, CF strain). The surgical procedures for implantation of guide cannula or electrodes as well as for partial cerebellectomy were carried out under pentobarbitone-Na (40 mg/kg, ip) anaesthesia in aseptic conditions.

Injection of morphine into cerebellum: A stainless steel guide cannula (22 G) with a stylet inserted into its shaft of 1 mm length was chronically implanted onto the cerebellar surface under stereotaxic guidance. After a week, the analgesic test (15) was carried out following infusion of morphine solution through the implanted cannula in a volume of 1 µl by a microinfusion pump which delivered this volume from a 10 µl Hamilton syringe in 30 sec. For such infusion of drug solution, the stylet was removed and a hollow stainless steel needle (28 G) was inserted which was already connected with Hamilton Syringe by a length of polythene tubing filled with drug solution to be injected. The infusion needle was inserted 1 to 2 mm deep from the tip of the guide cannula. For injection of morphine into the anterior cerebellar region, or into posterior cerebellar cne, the guide cannula was implanted in the midline 2.5 to 3.0 mm or 3.0 to 4.0 mm posterior to Lambda respectively.

At the end of each experiment, the postmortem examination was made for confirmation of the position of implanted cannula as well as to note the spread of morphine solution into the cerebellar tissue. For this purpose, the animal was anaesthetised with pentobarbitone-Na, and Evans blue dye (2%) was infused following the same procedure as that for morphine. After 5 min, the brain was perfused with 100 ml buffered 10% formalin-saline and the whole brain was removed, and the location of the guide cannula and spread of dye into the tissue were noted through magnifying lens, following an incision of the cerebellum in sagittal plane below the tip of guide cannula.

Partial cerebellectomy: The head of the anaesthetised animal was fixed in the stereotaxic apparatus. The skull bone was exposed by giving a midline incision on the skin. A burr hole was made in the midline on the skull either 2.5 mm or 3.5 mm or posterior cerebellar cne, which was connected with a

After a week, the administration of morphine

At the end of the extent of cerebellectomy, the animal was fixed in the stereotaxic apparatus. The skull bone was exposed by giving a midline incision on the skin. A burr hole was made in the midline on the skull

Electrical stimulation was fixed in the stereotaxic apparatus. The skull bone was exposed by giving a midline incision on the skin. A burr hole was made in the midline on the skull

Morphine infusion was stained with Thionin for histologic

in 6 rats (Fig. 1-A) with the pea
The posterior cerebellum produces morphine after its systemic administration in rats. We further studied the analgesic effects of morphine in rats. Morphine was administered intraperitoneally in a dose of 10 mg/kg. The analgesic test was carried out before and after morphine administration. The analgesic test was performed by placing the animal in a cold-water bath and observing the time until the animal withdrew its paw. The results showed that a dose of 10 mg/kg of morphine produced profound analgesia in all rats.

After a week, the analgesic tests were carried out before and after intraperitoneal administration of morphine (10 mg/kg).

At the end of the experiment, the postmortem study was done for the confirmation of the extent of cerebellar area removed. The animal was anaesthetised with pentobarbitone-Na and its head was fixed in stereotaxic apparatus. The brain was perfused with 100 ml buffered 10% formalin-saline solution. After 10 min, the skull bone was removed carefully and the depth and the extent of the cerebellar area/areas ablated was determined and plotted on a stereotaxic map of cerebellum.

Electrical stimulation of anterior cerebellum: The animal's head under anaesthesia was fixed in the stereotaxic instrument. One bipolar electrode made of twisted stainless steel wire (0.2 mm diameter) teflon coated except for the cross-sectional area at the tip was implanted in the midline 2 to 2.5 mm posterior to lambda, and 0.5 to 1 mm deep from the dura so that the tip lay in the culmen area. The electrode and connector were secured to the skull by flowing dental acrylic cement around them and two stainless steel screws threaded into the skull. After a week, the analgesic test was carried out following electrical stimulation of cerebellar tissue through implanted electrode. The square wave electrical pulses were delivered from Grass S88 stimulator (USA).

At the end of the experiment, the animal was anaesthetised with pentobarbitone and the brain was perfused with buffered formalin-saline solution with the electrode in situ position. Serial frozen sections were cut at 40 μm and alternate sections stained with Thionin for histological verification of location of electrode placements.

RESULTS

Morphine infusion into cerebellum: The results show that a dose of morphine as small as 10 μg infused into anterior cerebellar region produced profound analgesia in 6 rats (Fig. 1-A). In all these rats, the analgesia began within 3 min of morphine infusion with the peak analgesia reached around 30 min. The analgesia lasted for more
than 60 min. The postmortem examination in these animals showed that morphine solution was distributed mainly into the culmen region in 4 rats and partially into dorsal lobus centralis in two rats. It has further been observed that the analgesia elicited from the above anterior cerebellar region was antagonised following naloxone administration. The results are shown in Fig. 1-B. Thus in two rats, in which the analgesia began to develop following morphine injection (10 μg) into culmen of anterior cerebellum, the intraperitoneal administration of 1 mg/kg naloxone almost immediately antagonised the analgesia (Fig. 1-B).

In four animals, the microinfusion of morphine (10 μg) did not produce analgesia. The postmortem examination showed that in two rats, the cannula was implanted in between the inferior colliculus and the brain stem, whereas in the other two rats it was implanted in the cerebellum. In all rats, the analgesia lasted for at least 60 min. The same dose of morphine (10 μg) produced analgesia in 4 rats (Fig. 1-A).

Morphine analgesia in rats.

The results in Fig. 1-A show that the analgesia produced by morphine (10 μg) in rats exerted a remarkable effect on pain perception.
mals showed that morphine
4 rats and partially into dorsal
showed that the analgesia elicited
following naloxone administration,
in which the analgesia began.

The analgesic response of morphine did not occur following microinfusion of
same dose of morphine into posterior cerebellar regions such as lobus simplex and declive
in 4 rats (Fig. 1-A).

Morphine analgesia in partial cerebellectomized animals:
The results in Fig. 2 show that removal of anterior cerebellar region in 5
rats exerted a remarkable influence on analgesic response that occurred following i.p.
i.p. administration of morphine (10 mg/kg) in intact control (n=5), culmen and centralis ablated (n=5), and lobus simplex and declive ablated (n=5) groups of rats. A marked diminution of duration of analgesia occurred in
culmen centralis ablated group.

Morphine analgesia in chronic anterior cerebellectomised animal produced analgesia but the
duration of analgesia was greatly shortened. Thus the analgesia remained for not more than 45 min as compared to about 75 min in control animals.

The postmortem examination in these animals showed that this marked diminution of analgesic response of morphine was associated with the ablation of culmen or the culmen and dorsal lobule of lobus centralis together. It was interesting to observe that cerebellar ablation *per se* did not modify the nociceptive response of the animal.

Such attenuation of morphine analgesia was not observed following ablation of posterior cerebellar region (lobus simplex and declive) in 5 rats. Rather, a tendency for prolongation of analgesia was apparent (Fig. 2).

![Graph showing analgesia in rats following cerebellar ablation](image)

Fig 3: Shows post-stimulation analgesia in 6 individual rats following bipolar electrical stimulation (pulse width 0.2 msec, 70Hz) of anterior cerebellum. Arrow indicates application of current for particular duration.

Top: shows analgesia in one rat with 1st and 2nd stimulation at an interval of 3 hrs between two stimulations. Electrode was located within the culmen.

Middle: shows analgesia in two rats. Electrode was located at the cortical surface of culmen region.

Bottom: shows analgesia in two rats with electrode located in lobus centralis but close to culmen region.

The present results bear certain physiological resemblance to morphine. Thus the delivery of morphine into culmen region for 5 to 10 sec, but the current strength from animal to animal, was again tested 3 hr after stimulation. The result was a current of 60 μA applied paripassu of morphine systemically produces values obtained for other regions.

That the analgesia to be specific becomes apparent in simplex or declive region to manifest antinociceptive effect of morphine on target regions. That microinjection of morphine into lobus centralis, uvula, and lobus simplex, uvula, respectively.

It has also been from culmen region of rats of naloxone. This ob
Focal electrical stimulation of anterior cerebellum:

Following focal electrical stimulation (0.2 msec pulse-width; 70 Hz) of culmen region for 5 to 10 sec. in 5 animals, the post-stimulation analgesia developed (Fig. 3). But the current strength and the duration of post-stimulation analgesia showed variation from animal to animal, which was found to be related with the location of the electrode. Thus in two rats with electrode located within culmen cortical region, a current strength between 90 and 110 μA produced analgesia lasting for about 5-15 min. One of the rats was again tested 3 hr after first stimulation experiment for analgesia with 2nd electrical stimulation. The result is shown in Fig. 3 (top trace). Analgesia occurred again with a current of 60 μA applied for 10 sec.

DISCUSSION

The present results demonstrate that culmen region of anterior cerebellum in rats bears certain physiological importance in relation to the antinociceptive response of morphine. Thus the development of prolonged analgesia following direct micro-injection of morphine into culmen or culmen-dorsal centralis, as well as, the marked diminution of duration of morphine analgesia in rats with chronic ablation of the same area, if considered together, it would appear that antinociceptive response of systemically administered morphine although occurs through its action on well-established analgesic sites in the brain stem, but its concurrent sustainance appears to be dependent on the action of morphine on target regions of anterior cerebellum. In fact it has been shown (13) that morphine, following its systemic administration in rats, reaches also very rapidly into cerebellar tissue, pari passu with other regions of the brain. Thus about 146% of the amount of morphine systemically injected in rats enters cerebellum which is closely similar to values obtained for other anatomical regions of the brain.

That the analgesic action elicited from culmen area of anterior cerebellum appears to be specific becomes apparent from the findings that injection of morphine into lobus simplex or declive region of posterior cerebellum has been found to be ineffective to manifest antinociceptive response. Moreover, Yaksh et al. (21) have earlier shown that microinjection of morphine into other regions of rat cerebellum, such as, ventral lobule of centralis, uvula, and into different white matter regions close to lobus centralis, culmen, lobus simplex, uvula, nodulus and lingula failed to elicit analgesia.

It has also been shown in the present experiments, that morphine analgesia elicited from culmen region of anterior cerebellum is completely antagonised by systemic injection of naloxone. This obviously indicates that analgesic action is mediated through opiate
receptors. But the opiate receptor bindings studies in rat brain with 3H-naloxone showed that cerebellum is the poorest binding site for naloxone as compared to that for other opiate binding sites of brainstem region (6). This may seem apparently inconsistent with the present findings of blockade of cerebellar mediated morphine analgesia with naloxone. However, it is to be noted that receptor binding studies have not been explored critically in different anatomical regions of cerebellum, therefore, even the presence of high affinity opiate receptors in culmen region of anterior cerebellum might have been overlooked in such studies, and such argument can also be held true for the report of the presence of small amount of enkephalin in cerebellar cortex (9). Recently, Simon (18) has reported that (3H)-etorphine stereospecifically binds in human cerebellar cortex in the range of 0.12-0.07 pmol/mg protein and such bindings are also observed in cow, cat, dog and monkey.

Since several workers (1,10,11) have reported that electrical stimulation of certain specific sites in brain stem produces analgesia, and the same sites have already been shown to be sites in which morphine injection elicits marked analgesia, therefore, a few experiments were carried out also to examine analgesia following electrical stimulation of culmen region. The results showed that brief stimulation of culmen for 5 to 10 sec with current varying from 60-300 μA exhibits development of analgesia which persists after withdrawal of stimulus. The duration of post-stimulation analgesia varied between 5 and 10 minutes, and in one case, it remained for 20 minutes. The development of analgesia following electrical stimulation of cerebellum has earlier been reported by Siegel and Wepsic (17). Interestingly, they reported that maximum analgesic response (against noxious electrical shocks in tail) developed in monkeys following electrical stimulation (0.2 mA) of intermediate anterior lobe (culmen) as well as its physiologically related rostral dentate-inter-positus-brachium conjunctivum region. These observations in conjunction with our present finding indicate in general that culmen area of anterior cerebellum can serve as important locus whose activation either with narcotic drug or electrical stimulus can arouse central mechanisms of pain suppression.

It is fairly well-established that there exists a powerful pain suppressive system in brainstem reticular formation (RF) concentrated specially in periventricular, gray, PAG and reticulo-gigantocellularis area, and its activation diminishes responsiveness to noxious stimuli, atleast in part, through descending spinal pathways which block transmission of nociceptive stimuli through the spinal cord. Since it is well known that connection between RF and cerebellum are extensive, therefore, it is possible that culmen exhibits its antinociceptive effect.

The authors are indebted to Dr. K. S. Rao for his support and encouragement. Financial assistance was provided by the Indian Council of Medical Research, New Delhi.
electrical stimulation of certain sites has already been observed in analgesia, therefore, a few experiments have been performed in order to determine whether analgesia varied between animals. The development of analgesia, which begins in the first few minutes following stimulation of the diencephalon, is usually maximal within 5 to 10 seconds of analgesia which persists for several minutes. The development of analgesia, therefore, is a few times slower than in some other cases, the pain returns after occlusion of the posterior inferior cerebellar artery.

ACKNOWLEDGEMENTS

The authors are grateful to the Indian Council of Scientific and Industrial Research, New Delhi, for financial assistance of this work. The authors are also thankful to Dr. K. S. Rao for his assistance in this work.

REFERENCES

12. Dey and Ray

Summary: Motor and sensory conduction velocities to the hand and foot were measured in normal and diabetic individuals. Motor conduction velocity was adjusted to provide for the effects of ischemia and in the post-surgically ischemic conditions. Diabetic rats but were unchanged to an equal extent in normal rats. The slowings of MCV in diabetic rats may be related to the difference in ischemia of MNV of peroneal nerves. A slowing of MCV in diabetic rats may be related to the difference in ischemia of MNV of peroneal nerves.

Key words: streptozotocin, diabetic rats, nerve conduction velocity (MCV), sensory and motor conduction velocities.

Abnormal preservation of neural function has been attributed to occur in diabetic subjects. Normal subjects with diabetes may have more sensory and motor conduction velocity (MCV) than did normal subjects.

* Contribution No. 660 from the
** Present address: CIBA-GEIGY