PULMONARY FUNCTION TESTS IN SCHOOL CHILDREN

C. D. AUNDHAKAR, G. J. KASLIWAL, V. S. YAJURVEDI, M. S. RAWAT, S. K. GANERIWAL AND R. N. SANGAM

Departments of Paediatrics and Physiology,
Dr. V. M. Medical College, Solapur - 413 003

(Received on September 24, 1984)

Summary: Pulmonary Function tests were measured in 261 healthy boys and 254 healthy girls in the age group of 6 to 15 years with standard Benidects Roth type recording spirometer and Wrights Peak Flow Meter. The values of Pulmonary Functions were found to be increased with increase in age. For vital capacity this relation was curvilinear. All values were higher in boys than girls. There was significant positive correlation between pulmonary Function Tests Vital Capacity (VC), Maximum Voluntary Ventilation (MV), peak Expiratory Flow Rate (PEFR) and anthropometric parameters like height, weight and body surface area. Equations were formed for prediction of VC, MV, and PEFR values in relation to the height. The values of Pulmonary Functions were lower when compared with Western Standards, but were comparable with different Indian Studies.

Key words: pulmonary functions in school children correlation with anthropometric parameters comparison between boys and girls equations for prediction of values of lung functions (VC, M.V.V., P.E.F.R.)

INTRODUCTION

There are increasing No. of reports on Pulmonary Function Tests in Children from various part of the country. The values of Pulmonary Function Tests are influenced by anthropometric environmental, genetic, ethnic and socioeconomic and technological variations. Thus each laboratory should establish their own normal standards. The present work was undertaken to determine normal data for lung function tests in school children of Solapur City (Western Maharashtra). Comparison of values of lung function tests was made in boys and girls and also with other studies and effort has been made to form equation for giving prediction values for various lung functions like V.C., M.V.V., P.E.F.R. in boys and girls. These values can help in determining variation from normal in Pulmonary disorders. Correlation is also studied between various parameters and Pulmonary Function Tests.
MATERIAL AND METHODS

261 boys and 254 girls in age group of 6 to 15 years were studied from local primary school and high school. Care was taken to exclude those suffering from any disease of the chest or upper respiratory tract or allergic disorder. A thorough physical examination was carried out in all the children. Physical parameters like standing height was recorded in cms and weight in kg. Body surface area was calculated from Dubois body surface area Nomogram. Age of the child was verified from school birth records. Nutritional status of children was assessed according to the classification given by Nutrition Sub-Committee of Indian Academy of Paediatrics.

GRAPH A
Showing vital capacity (ml) Vs
Age in (months) boys & girls.
All subjects were given thorough instructions and demonstrations regarding the performance of Pulmonary Function Tests. Tracing on the spirogram were taken after being fully satisfied that subjects have understood the procedure of the tests. Lung function testing was done in sitting position using disposable mouth piece with nose clip applied. Forced vital capacity at one second and maximum voluntary ventilation were recorded by Benedicts Roth type recording spirometer. All readings were taken three times and best of the three was selected. All volumes were corrected to B.T.P.S. peak expiratory flow rates were recorded with Wright's Peak Flow Meter. Best of the three
readings were recorded. Data was analysed statistically, the correlation coefficient between physical parameters and different lung function were worked out. Regression equations were formed for vital capacity, MVV and PEFR.

RESULTS

Mean values of V.C., M.V.R., P.E.F.R. in different age group in boys and girls are shown in graph A,B,C, respectively. Mean values of ratio of FEV₁/FVC ratios at different age groups in boys and girls is shown in graph 'D'. Regression equations of pulmonary functions in boys and girls are shown in Table 1.
TABLE I: Regression equations based on height for various pulmonary Function Tests in boys and girls.

<table>
<thead>
<tr>
<th>Regression equation of boys</th>
<th>±S.D.</th>
<th>Regression equation of girls</th>
<th>±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VC=1.560 X 10^{-3} X (Height in cms)^2</td>
<td>140</td>
<td>1. VC=2.00 X 10^{-3} X (Height in cms)</td>
<td>110</td>
</tr>
<tr>
<td>2. MVV=1.148 X height in cms - 83.786</td>
<td>6.94</td>
<td>2. MVV=1.390 X height in cms - 122.50</td>
<td>7.62</td>
</tr>
<tr>
<td>3. PEFR=4.16 X height in cms - 274.189</td>
<td>27.78</td>
<td>3. PEFR=4.802 X height in cms - 371.075</td>
<td>28.25</td>
</tr>
</tbody>
</table>

DISCUSSION

All values of lung functions increased with age. FEV₁/FVC ratio was decreased with increase in age. Values of various Pulmonary Function Tests were more in boys than girls (Graph A.B.C.) except FEV₁/FVC ratio (Graph D.) Positive correlation was found between different physical parameters like height, weight, body surface area and age, in boys and girls. It is observed that height and body surface area has best correlation coefficient amongst different physical parameters and pulmonary function tests. Best
correlation was also noticed by Kennedy et al. (10), Dugdale et al. (6) and Godfrey et al. (8). In a study done by Singh et al. (19) showed best correlation with body surface area followed by weight height and age in decreasing order. In similar study done by Chetty et al. (3). The correlation of vital capacity was highest with weight.

The regression equations for vital capacity maximum voluntary ventilation and peak respiratory flow rate in boys and girls are shown in Table I. As the vital capacity values were found to have a curvilinear relationship regression equation was formed after logarithmic conversion of data.

The values of this study are compared with similar studies done so far (1, 2, 3, 4, 5, 6, 7, 8, 9, 11). Out of these values those of Jain and Ramaih (9) and Chetty et al. (3) go hand in hand with present study. In other similar Western studies the values of vital capacity are on higher side except that of Dugdale et al. (6), and Godfrey et al. (8) whose values are nearer to our study. Values of vital capacity in this study are comparable with Singh et al. (19). Values were higher when compared with those of Deshpande et al. (5) probably because his subjects were from poor socioeconomic section of the society. When values were compared in relation to the height they were comparable with our study.

M.V.V. : The values of M.V.V. in present study go hand in hand with those of Singh et al. (19) and values are also consistent with those of Polgar et al. (18) and Kennedy et al. (10).

P.E.F.R. : The studies in adults in India have shown lower P.E.F.R. values when compared with Western figures. Values of P.E.F.R. are compared with their studies (5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18). This is in contrast with findings of studies shown lower values of ventilatory functions in Indian Children. A possible explanation of this observation may be due to the fact that children studied were comparable with those of Western studies. Values of Deshpande et al. (5) were lower probably because his subjects were from poor socioeconomic section. Most of the studies have been separate regression equations for boys and girls. Polgar et al. (18) who reviewed all the literature of pulmonary functions test had come to the conclusion that combined equation of P.E.F.R. can be formed for boys and girls. We also observed the similar findings as shown in Graph C1.

FEV1/FVC Ratio : The portion of vital capacity blown out in unit time in children is significantly higher than that of adults. This feature has been observed in this study as well as in Western Studies. Our values of FEV1/FVC corresponds to those of Lion et al. (12). In this study the air blown out is in the tune of 88.6% and 89.9% (Table No. V) respectively in boys and girls in one second. Graph A B C1 shows that values of different
pulmonary function tests are higher in boys when compared with girls. For vital capacity this difference increased as age is increased which is consistent with Zapletal et al. (22).

REFERENCES