LETTER TO THE EDITOR

ANTICONVULSANT AND ANALGESIC ACTIVITY OF 1, 2, 4-THIADIAZOLES. II

Sir,

(A Received on April, 15, 1988)

A variety of five membered heterocyclic compounds have recently been synthesized as acetazolamide analogues and screened for anticonvulsant activity. Recently Chapleo et al. (1, 2, 3) and Stillings et al. (7) reported on potent anti-convulsant properties of substituted 1, 3, 4-thiadiazoles in rats and mice against electrically and chemically induced seizures. This prompted us to synthesize a few 1, 2, 4-thiadiazoles (which are isomeric with 1, 3, 4-thiadiazoles) and test their anticonvulsant and analgesic activities, along with their safety indices.

A total of eleven analogues were prepared (Table I) according to method described by Christophersen et al. (4). They were soluble in chloroform, polyethylene glycol 200 and in both ethanol. Albino rats (CF) of either sex (100-200 g) were used in all experiments. All the drugs were given in a dose of 4 mg/kg as solutions in polyethylene glycol 200. Diphenyl hydantoin (SIGMA; ip) and phenobarbitone sodium (IDPL; ip) were used as standards for work on anticonvulsant activity. They were given as aqueous solutions (ip). Control groups received either polyethylene glycol 200 or normal saline (0.5 ml, as the case may be). Morphine sulphate was the standard in analgesiometry (control animals received only normal saline). There were 10 animals per group.

Seizures were induced by DC (see 8; 1.50 mA, for 0.2 sec) delivered through a pair of corneal electrodes, using a Technoconvulsiometer. The presence or absence of hind limb extensor was taken as the end point, showing protection or a lack of it. Drugs were administered (ip) to groups of animals 24 hr after initial screening for convulsion, and their effect determined after 45 min in MES test. Convulsions were also induced chemically. Strychnine hydrochloride (IDPL, 4 mg/kg sc) was administered in all groups 45 min after ‘drug’ administration, and the animals observed for another 45 min for convulsions. Pentylenetetraole (BOEHRINGER-KNOLL; 100 mg/kg, sc) and picrotoxin (SISCO LABS; 14.4 mg/kg, sc) were

References

Table I: Anticonvulsant (Electroshock) and analgesic activity of 1, 2, 4-thiadiazoles.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Anticonvulsant activity</th>
<th>Analgesic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: Structure of derivatives of 1, 2, 4-thiadiazoles.
C ACTIVITY OF II

We recently been synthesized as an activity. Recently Chapleo et al., have established properties of substituted 1,2,4-thiadiazole and chemically induced seizures. This are isomeric with 1,3,4-thia-
diazoles along with their safety indices.

According to method described by polyethylene glycol 200 and in hot blood in all experiments. All the polyethylene glycol 200. Diphenyl hydantoin was used as standards for solutions (ip). Control groups (0.5 ml, as the case may be). All animals received only normal saline (1 ml) delivered through a pair of needles or absence of hind limb lack of it. Drugs were administered convulsion, and their effect induced chemically. Strychnine (ps 45 min after 'drug' administration. Pentylene tetraole CO LABS; 14.4 mg/kg, sc) were

Compounds I - X

Fig. 1: Structure of derivatives of 1,2,4-thiadiazoles.

<table>
<thead>
<tr>
<th>Compd, No.</th>
<th>Treatment</th>
<th>R</th>
<th>Latent period of tail flick response (sec) Mean±SEM (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>III</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IV</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VI</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VII</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VIII</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IX</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>X</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>XI</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compd, No.</th>
<th>Treatment</th>
<th>R</th>
<th>Latent period of tail flick response (sec) Mean±SEM (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>III</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IV</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VI</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VII</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VIII</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IX</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>X</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>XI</td>
<td>Control</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Anticonvulsant (Electroshock) and analgesic activity of 1,3,4-thiadiazoles

<table>
<thead>
<tr>
<th>Treatment</th>
<th>R</th>
<th>Anticonvulsant activity (%)</th>
<th>P (Friedman)</th>
<th>Analgesic activity (Latent period of tail flick response) Mean±SEM (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Diphenyl hydantoin sodium 60*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phenobarbitone sodium 100***</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Morphine sulphate 7.18±0.238</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Drugs were given (ip); see text for details.

* P<0.05 ** P<0.01 *** P<0.001 Chi - square test for anticonvulsant and 't' test for analgesic activity.
also used as chemoconvulsants in some experiments. The results were analysed by Chi-square test. The ED_{50} and LD_{50} were calculated by making use of the probit transformation (5).

Analgesic studies were performed using thermal stimulus technique as described by Kendall et al. (6). The tail was gently immersed into water kept at 50°C and the time taken for the withdrawal of tail was noted. Animals showing the flick time in range of 3 to 10 sec only were selected. All treatments (4 mg/kg, or morphine, 10 mg/kg, ip) were administered to groups of animals. After 30 min tail flick time was determined again. The results were analysed by student's 't' test.

Most of the compounds exhibited anti-MES activity. The parent unsubstituted compound (I) was found to give 40% protection at a dose of 4 mg/kg (ip). Substitution in the benzene ring showed considerable variation in the activity. The meta methyl substituted drug (III, $ED_{50}=4.17$ mg/kg, $LD_{50}=34.52$ mg/kg with safety index 8.28) and para methyl substituted drug (IV, $ED_{50}=1.64$ mg/kg, $LD_{50}=19.84$ mg/kg with safety index 19.08) were found to give 60% and 80% protection respectively, while ortho substituted (II) drug gave only 10% protection. The drug (XI) in which benzene ring was replaced with a cyclohexyl ring showed 60% protection ($ED_{50}=5.25$ mg/kg, $LD_{50}=25.36$ mg/kg and safety index 4.83).

Most of the compounds of the series were analgesic. Compound II (R=2-CH₃) shows very highly significant analgesic value (P<0.001). The chloro and bromo substituted drugs (Compounds VI, VII, VIII and IX) show highly significant analgesic activity. Table I shows the potency rating in comparison with morphine at a dose of 10 mg/kg. A high correlation coefficient ($r=0.99$, $n=11$) was obtained between partition coefficient (lipid solubility) and anticonvulsant activity (percentage protection). The compound with maximum partition coefficient showed maximum activity.

S. N. PANDEYA AND ANIS A. KHAN

Department of Pharmaceutics,
Institute of Technology,
Banaras Hindu University, VARANASI - 221 005

REFERENCES

results were analysed by Chi-square and the probit transformation (5).

Thus, the probit transformation as described by Crossland (5) and the time taken in range of 3 to 10 sec (mg/kg, ip) were administered to mice again. The results were

The parent unsubstituted 4 mg/kg (ip). Substitution in the meta methyl substituted drug 1908 and para methyl substituted (19 08) were found to give more (II) drug gave only 10% with a cyclohexyl ring showed fey index 4.83).

Compound II (R=2-CH₃) shows good anticonvulsant activity. Table I shows that 10 mg/kg. A high correlation coefficient (lipid solubility) and found with maximum partition

ANNOUNCING

XXXI INTERNATIONAL CONGRESS OF PHYSIOLOGICAL SCIENCES
HELPSINKI, 9-14 JULY, 1989

CENTENNIAL

REGISTRATION : Deadline 15 FEB. 1989

FOR LOW FEE REGISTRATION

REGISTRATION FEES : PAID BY PAID AFTER
15 FEB. 15 FEB.

ACTIVE PARTICIPANT
GRADUATE STUDENT
ACCOMPANYING PERSON

ADDRESS : XXXI ICPS, P. O. BOX 722,
SF-00101, HELSINKI FINLAND