EFFECT OF α-TOCOPHEROL ON ISOPROTERENOL INDUCED MYOCARDIAL INFARCTION IN RATS - ELECTROCARDIOGRAPHIC BIOCHEMICAL AND HISTOLOGICAL EVIDENCES

A. PARITHA ITHAYARASI, V. N. PADMAVATHY AND C. S. SHYAMALA DEVI*

Department of Biochemistry, University of Madras, Guindy Campus, Madras - 600 025

(Received on November 29, 1995)

Abstract: The effect of α-tocopherol (6 mg/100 g body wt, orally, daily for 90 days) pretreatment in isoproterenol (20 mg/100 g body wt, subcutaneously, twice at an interval of two days at the end of the α-tocopherol pretreatment) induced myocardial infarction was studied in rats. Isoproterenol administered rats showed electrocardiographic changes suggestive of myocardial infarction with marked ST segment elevation, Q waves appearance and a significant increase in heart rate. In isoproterenol administered rats, a significant decrease was observed in the activities of marker enzymes such as aspartate amino transferase, alanine amino transferase, lactate dehydrogenase and creatine kinase in heart and aorta with a significant increase in their activities in serum. The levels of lipid peroxides in terms of "TBA reactants" increased significantly in serum, heart and aorta on isoproterenol administration. The histology of heart and aorta showed marked fragmentation of muscle fibres and necrotic lesions in isoproterenol administered rats. α-Tocopherol pretreated rats showed a near normal ECG pattern, levels of lipid peroxides, activities of marker enzymes and a near normal histology of heart and aorta on isoproterenol administration.

Key words: myocardial infarction
α-tocopherol electrocardiogram marker enzymes isoproterenol

INTRODUCTION

Isoproterenol [1-(3, 4-dihydroxyphenyl-2-isopropyl amino ethanol) hydrochloride], a synthetic catecholamine and β-adrenergic agonist has been found to cause a severe stress in the myocardium resulting in infarct like necrosis of the heart muscle (1). Administration of isoproterenol is known to produce electrocardiographic and enzymatic changes suggestive of myocardial ischemia in experimental animals (2).

Lipid peroxidation, presumably the result of free radical mediated injury, has been shown to occur during myocardial ischaemia (3). Isoproterenol induce myocardial infarction in rats has been shown to be accompanied by hyperglycemia, hyperlipidemia, increase in serum creatine phosphokinase, alanine amino transferase, aspartate amino transferase and lactate dehydrogenase activities (4, 5).

α-Tocopherol is a lipid soluble antioxidant that protects the polyunsaturated fatty acids and other components of the cell and organelle membranes from oxidation by reactive free radicals (6). Since α-tocopherol is a very effective, naturally occurring chain-breaking antioxidant,
A study was undertaken to find whether \(\alpha \)-tocopherol pretreatment could enhance myocardial tolerance towards experimental myocardial infarction. Since lipid peroxidation has been reported to be associated with various deleterious effects including tissue damage and necrosis, direct evidence like histology of the organs involved may throw more light on the effect of \(\alpha \)-tocopherol on isoproterenol induced myocardial infarction in rats.

METHODS

Adult male Wistar rats weighing 120–150 g, obtained from Fredrick Institute of Plant Protection and Toxicology, Padappai, Madras were used for the study. They were acclimatised to animal house condition and were fed with commercial pelleted rat chow, (Hindustan Lever Ltd, Bombay). The rats were divided into 4 groups. Group I served as control. Group II rats were administered isoproterenol (20 mg/100 g body wt, subcutaneously, twice at an interval of 24 hrs at the end of experimental period). Group III rats were orally administered \(\alpha \)-tocopherol (6 mg/100 g body wt, orally, in pure olive oil daily for a period of 90 days). Group IV rats were orally administered \(\alpha \)-tocopherol in pure olive oil at the above mentioned dosage for a period of 90 days and were administered isoproterenol (20 mg/100 g body wt, sc, twice at an interval of 24 hrs) at the end of the experimental period.

ECGs of rats were recorded using Physiocontrol, Life Pak 9B, cardiac monitor defibrillator. Under light anaesthesia, recordings were made on the bipolar standard leads, i.e., I, II and III and the augmented extremity leads. i.e., aVR, aVL and aVF. However, it was observed that in all cases of myocardial infarction, lead II appeared to show the individual waves best and hence ECG monitoring thereafter was done on lead II only.

After the recordings of the ECG, the animals were sacrificed by cervical decapitation. Blood was collected and the serum separated was used for the assay of marker enzymes. Immediately after the sacrifice, the heart and aorta were dissected out and washed in ice-cold saline. A portion of the tissues was fixed in 10% formalin saline and stained with haematoxylin and eosin for histological examination. Another portion of the tissues was homogenised in 0.1M Tris-HCl buffer (pH 7.4) and used for the estimation of aspartate amino transferase (EC 2.6.1.1) (7), alanine amino transferase (EC. 2.6.1.2) (7), lactate dehydrogenase (EC 1.1.1.27) (7) and Creatine Kinase (2.7.3.2) (8). Lipid peroxides in serum, heart and aorta were estimated by the method of Okhawa et al (9). Protein was determined by the method of Lowry et al (10). Since no significant change was observed in any of the parameters studied by olive oil, the values for olive oil are not included.

RESULTS

Fig. 1 shows the ECG pattern and heart rate of control and experimental animals. A significant elevation of ST segment and significant reductions in PR interval, QRS interval and QT interval was observed in isoproterenol administered rats when compared to control. A significant increase in heart rate was also observed. In \(\alpha \)-tocopherol pretreated rats, administered isoproterenol, ECG pattern and heart rate was maintained near normal.

In isoproterenol treated rats, a significant increase in serum and tissue lipid peroxides was observed. Animals protected with \(\alpha \)-tocopherol maintained the level of lipid peroxides in serum and tissues at near normal values (Table I).

Isoproterenol administered rats showed a significant decrease in the activities of marker enzymes such as ALT, AST, LDH and CK in heart and aorta with a concomitant increase in their activities in serum. Rats protected with
α-tocopherol maintained the activities of marker enzymes in serum, heart and aorta at near normal values (Table II).

In isoproterenol administered rats, the heart shows an area of myocytolysis and infiltration by mononuclear cells. The lumen shows a thrombus and the aorta shows an early thrombus formation. Microscopic examination of heart and aorta of isoproterenol administered rats and protected with α-tocopherol showed normal architecture except a few areas with slight haemorrhage and an area of early thrombus formation in the heart and aorta showed a normal architecture.
DISCUSSION

Normal ECG of the rat resembles in essential the detail, that of man. Heart rates of the control rats and isoproterenol administered rats obtained in this study are comparable to the values reported by Kela et al (11).

Control rats showed a normal P wave and no Q waves were observed and every P wave was followed by a narrow QRS of normal contour. In isoproterenol administered rats a significant elevation in the ST segment and a higher heart rate was observed when compared to control. ST segment elevation is a sign of myocardial infarction (12). Similar findings on isoproterenol induced myocardial infarction have been reported by Hill et al (13).

Group IV rats showed a normal ECG with P-QRS-T configuration except slight elevation in ST segment. Heart rate was maintained near normal. The maintenance of normal ECG pattern confirms the protective effect of α-tocopherol in preventing free radical mediated myocardial damage.

The diagnostic marker enzymes of myocardial infarction are creatine kinase, lactate dehydrogenase and transaminases (14). Isoproterenol treated rats showed a significant decrease in the activity of the enzymes such as LDH, CK, AST and ALT in the heart and aorta with a subsequent significant increase in their activities in serum when compared to control (15). An increase in the activity of these marker enzymes in serum could be due to the leakage of the enzymes from heart as a result of necrosis. The amount of enzyme released from the damaged myocardium is a measure of the size of infarction (16). Damage to the myocardial and aortic tissues could be due to the free radical mediated lipid peroxidation by isoproterenol (17).

α-Tocopherol pretreatment in Group IV rats

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
& \text{Control} & \text{Isoproterenol} & \alpha\text{-Tocopherol} & \alpha\text{-Tocopherol} \\
& & & & + \text{isoproterenol} \\
\hline
\text{Aspartate amino transferase (AST)} & A & 24.3 \pm 1.7 & 41.3 \pm 3.7*** & 22.9 \pm 1.9 & 27.2 \pm 1.7* \\
& B & 37.2 \pm 2.8 & 24.3 \pm 1.8*** & 38.7 \pm 2.5 & 32.9 \pm 2.8* \\
& C & 32.1 \pm 2.3 & 27.3 \pm 1.9** & 34.2 \pm 2.6 & 32.0 \pm 2.8 \\
\hline
\text{Alanine amino transferase (ALT)} & A & 13.8 \pm 1.1 & 24.4 \pm 1.9*** & 12.9 \pm 0.8 & 14.7 \pm 0.9 \\
& B & 21.4 \pm 1.8 & 12.1 \pm 0.8*** & 23.5 \pm 1.8 & 19.1 \pm 1.8 \\
& C & 18.5 \pm 1.4 & 15.8 \pm 1.3** & 18.3 \pm 1.5 & 17.9 \pm 1.4 \\
\hline
\text{Lactate dehydrogenase} & A & 75.6 \pm 5.5 & 149.7 \pm 9.4*** & 73.9 \pm 6.1 & 83.64 \pm 6.4 \\
& B & 96.5 \pm 7.1 & 61.3 \pm 5.4*** & 98.7 \pm 7.9 & 86.2 \pm 8.2 \\
& C & 87.4 \pm 8.1 & 76.1 \pm 6.9 & 88.8 \pm 7.9 & 85.9 \pm 7.8 \\
\hline
\text{Creatine Kinase} & A & 274.1 \pm 19.1 & 610.4 \pm 32.2*** & 256.3 \pm 17.3 & 306.2 \pm 20.5* \\
& B & 12.2 \pm 1.0 & 6.3 \pm 0.4*** & 13.0 \pm 1.1 & 11.0 \pm 0.8* \\
& C & 10.2 \pm 0.8 & 8.4 \pm 0.6** & 11.2 \pm 0.8 & 9.8 \pm 0.8 \\
\hline
\end{array}
\]
maintained the activities of the marker enzymes in serum and tissues near normal. This could be due to the effective free radical quenching property of α-tocopherol (18). According to the antioxidant hypothesis, the primary function of α-tocopherol in vivo is the prevention of the destructive peroxidation of polyunsaturated fatty acid (PUFA) (19). α-Tocopherol may physically stabilise biological membranes that are rich in PUFA by specific physiochemical interactions of the phytol side chain of vitamin E and arachidonyl residues of phospholipid molecules in the hydrophobic regions of biological membranes (20).

A significant increase in the levels of lipid peroxides in serum, heart and aorta, in terms of TBA reactive substances, on isoproterenol administration indicates enhanced lipid peroxidation by free radicals. α-tocopherol pretreatment maintained the lipid peroxide levels at near normal values in Group IV rats, indicating its ability to inhibit free radical mediated lipid peroxidation (21).

Rats pretreated with α-tocopherol alone showed a significant decrease in serum lipid peroxide levels compared to control, which could be attributed to the high serum α-tocopherol concentration. Reports reveal an inverse relationship between serum α-tocopherol concentration and lipid peroxide levels (22).

As noted from the histology reports of heart and aorta, isoproterenol administration accompanied marked fragmentation of muscle fibres, appearance of mononuclear inflammatory cells and necrotic lesions in the left ventricle. This is in accordance with the observation of Narinder et al (23). Myocytolysis could have resulted in the leakage of the marker enzymes into the serum and the severity of lesions is related to the severity of myocardial necrosis. Group IV rats showed a near normal tissue architecture, which establishes the ability of α-tocopherol as an antioxidant, in reducing lipid peroxidation and the severity of myocardial necrosis.

The results obtained from this study confirm the role of α-tocopherol as a potent antioxidant against isoproterenol induced experimental myocardial infarction.

ACKNOWLEDGEMENTS

The authors (API and CSS) thank University Grants Commission for the financial support. The authors are grateful to Dr. Baba Krishnan and Dr. Rama Gopalan, Department of Pathology, Postgraduate Institute of Basic Medical Sciences, Taramani, Madras for the help rendered by them for the histological studies.

REFERENCES

